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A formalism is developed which allows overlap, kinetic energy, potential energy, and 
electron repulsion integrals over Cartesian Gaussian functions to be expressed in a very 
compact form involving easily computed auxiliary functions. Similar formulas involving 
the same auxiliary functions are given for the common charge moments, electric-field 
operators, and spin-interaction operators. Recursion relations are given for the auxiliary 
functions which make possible the use of Gaussian functions of arbitrarily large angular 
momentum. An algorithm is described for the computation of electron repulsion integrals. 

1. INTRODUCTION 

Cartesian Gaussian functions of the form x.ln~A2~Am exp(--ol,rA2) were first 
proposed as basis functions by Boys [l]. The obvious exploitable advantage of 
Gaussian functions over Slater-type orbitals (STO’s) is the ease with which a product 
of Gaussians on two different centers can be written as a simple function on a common 
center [2]. In the 1960’s when calculations on diafomic systems were already common, 
the intractability of the four-center integral over STO’s appeared to present a major 
block to polyatomic calculations [3]. Gaussians began to enjoy increased popularity 
when it was found that a fixed linear combination (a so-called “contracted Gaussian”) 
could be used to approximate an atomic orbital to good accuracy. Initially the trend 
was to use combinations of simple Gaussian “lobes” (n = 1 = m = 0) [4]. The 
resulting electron repulsion integral had been shown by Boys [l-3] to involve only 
a square root, an exponential, and the error function, Functions of p or d type were 
approximated by differences of Gaussian lobes displaced slightly from each other. 
For high angular momentum basis functions this approach becomes intractable both 
because of the large numbers of lobes involved and because of large differencing errors 
in combining the integrals over the basic lobes. 

The obvious alternative to contracted Gaussian lobes was contracted Cartesian 
Gaussians. Basis sets involving these functions are now more or less standardized [5]. 
Formulas for integrals over p-type Gaussians were easily derived [2] and programmed. 
Standard program packages such as POLYATOM [6] and GAUSSIAN 70 [6] have 
been available for some time. Some versions of these packages have included d and 
f orbitals. The formulas available for these integrals [2], while completely general, 
do not allow systematic calculation of integrals for higher angular momentum. 
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GAUSSIAN FUNCTION INTEGRALS 219 

In this paper we present auxiliary functions and recursion relations from which 
integrals for all values of n + 1 + m can be systematically (and efficiently) 
computed. 

2. CHARGE DISTRIBUTIONS 

An unnormalized Gaussian function on center A will be given by 

h I9 my aA , A) = xA~yAzzA” exp(--orArAz) (2.1) 

where (XA , y A , ZA) are the components of the vector rA = r - A with norm rA . 
The normalization constant for this function is 

where 

NnZwdaA) = Nd”lA) NZ(aA) %daA) (2.4 

Nk(a) = (2a/+“(4a)“~“[(2k - l)! !]-l/z. (2.3) 

Such functions are referred to as s, p, d ,... when L = n -+ I + m is 0, 1,2 ,..., respec- 
tively. Contracted basis functions can be formed from the 4’s in various ways. 
For example, it is usual to define 

f nZmA = 1 cL(aA) NnZda~) +(n, I9 m,  aA , A) (2.4) 
UA 

where CL(aA) is independent of n, l, m (for fixed L). Alternatively a more general 

can be considered which allows true angular momentum eigenfunctions to be formed 
(with the CL dependent part of N,,,(cL), a(2L+33/4, absorbed in CL(aA) and the 01 inde- 
pendent factors absorbed into B,L,‘$. 

Efficient computation of integrals requires that f,&,&A or gLM, which involve the 
same LX’S and the same nucleus be treated as sets. For maximum efficiency these sets 
should be large enough that calculation of the auxiliary functions common to a block 
of integrals becomes insignificant. On the other hand, excessively large blocks of 
integrals which result from treating all 15 L = 4 functions as one set should be 
avoided. 

For the sake of simplicity, the formulas in this paper will be given only for integrals 
over +‘s rather than f’s or g’s, in order to avoid writing explicitly the sums over 01. 
To this end it is convenient to define the charge distribution L?,J of two functions 
$,h I9 m,  OIA , A) and tiJ(n, 1, %i, 0~~ , B) as 

OI.! = +jJ = xAnxE”~Az~B7zAmzB” exp[-(adA2 + %b2)l. (2.6) 



220 MCMURCHIE AND DAVIDSON 

The key to the utility of Gaussians is the well-known identity which transforms the 
above exponential to a single exponential about a center P on the line segment a: 

exp[-(~ArA2 + aBrB2)1 = -% exp(-wp2) (2.7) 

where 
P = (~4 + 4)/(~ + 4, (2.8) 

and 

aP = aA + aB , (2.9) 

EIJ = eXp{ - aA ag(aA -t 01~)~~ / A - B I”}. (2.10) 

Since molecular calculations usually require absolute rather than relative accuracy, 
all integrals involving Q,J can be neglected if the constant EIJ is sufficiently small. 

The products xAnxB’, yAzyBr, and zAmzBfi could be converted into polynomials in 
x, , yp , and z, using relations like 

XA = XP + PA,, 

where 

XA = X - A,, 

xp = x - P, ) 

and 

PA, = P, - A,. 

It is more convenient in what follows, however, to define 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

4(XP ; aP) exp(--cllpxp2) = (a/aP,)i exp(--apxp2), 

from which it follows that Aj is related to the Hermite polynomial Hi by 

(2.15) 

fwP ; ap) = a~2H,(cty2xp). (2.16) 

The utility of the A’s is obvious-they will allow the charge distribution to be written 
as a sum of derivatives with respect to the coordinates of P and these derivatives 
can be taken outside of any integral over electronic coordinates. 

Now let us find the coefficients for expanding xAnxB’ in the A’s: 

?L+ri 
xA%B” = 1 4YQN(XP ; ap). (2.17) 

N=O 

The recursion relation for the Hermite polynomials is 

tHN(i? = NffN-l(‘f) + &HN+l(th 

Consequently 

(2.18) 

XAh,(XP ; a~) = Ndv-, + P4dLv + &v+~/~p. (2.19) 
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The recursion relations on the d? are then easily seen to be 

d$‘+l= (201# dE_, + m,dp + (N 4 1) dzl , 

(2.20) 

(2.21) 

where 
do0 = 1 0 * 

Similarly we can write 

yA$; = zi &L(YP ; aP> 
L=O 

(2.22) 

(2.23) 

and 

so that 

9?L+I?i 
ZAnzZBE = c f%%&P ; aP) 

M=O 
(2.24) 

(2.25) 

It is often convenient to write Q,, as 

QIJ = C Dunk AL, Af&) ew(--wP2h 
k 

(2.26) 

where 

(2.27) 

This allows generalization to include spherical harmonic basis functions when DI, is 
replaced by 

(2.28) 

In these equations k indexes all (N, L, M) combinations for which D is nonzero and 
the charge distribution is specified by a list of the nonzero Dk and the corresponding 
(Nk , LI, , Mrc>. In practice the CL(aA) Cr(ol,> and normalization are also incorporated 
into the Dk. 

Some integrals which must be evaluated involve derivatives of the basis functions. 
Consequently, it is convenient to define the additional charge distributions 

and 

61 = +,V+J, (2.29) 

TIJ = v+, * V'$JY (2.30) 

QIJ = PA> x Ph)- (2.31) 
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The x component of GIJ is easily obtained from 

alax &ii, i, ffi, aB , B) = fi$(@ - 1, 1, i?i, (YB , B) - 2‘&(fi + 1, i, ii?, ol, , B) (2.32) 

so that 

with 

(2.33) 

gj=’ = E,,(fidr;;li-’ - 2aBd;k’+1) e;ff ;; . 

The distribution T,, may be expanded in an analogous manner to give 

TIJ = 1 ~khv’kd,,&~ exP(--pG’) 
k 

with 

(2.34) 

(2.35) 

tk = (tic”” + t;’ + tr) EIJ , (2.36) 

tp = [njjd;;l. E-1 - 2nolBd;;1. ii+1 _ 2&d$;l*“-l + 4aAaB&y. E+l] &f ;; , (2.37) 

and similar expressions for t;c”” and t?. The z component of QIJ may be similarly 
shown to be of the form 

(2.38) 

where 

42) = f;Mm*EIJqy. 1 (2.39) 

The qzg obtained directly from a$,/& a#,/+ - a&jay &$,/ax involve new 4’s of 
total powers of x, y, and z higher by two than the starting ones. These highest powers 
cancel since 

Consequently, 

(2.41) 



(3.1) 
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It is important to note that different sets of (iVk , LI, , Mk) appear in (2.27), (2.28), 
(2.33), (2.35), and (2.38). Also, larger values of N + L + M appear in the derivatives 
than in the charge distribution. 

3. BASIC INTEGRALS 

From the previous section it is clear that the one-electron integrals to be evaluated 
all reduce to the form 

WLM I 01 = pxrd 4&1P ; 4 AdYIP ; aP> &f(ZlP ; aP) 

x exp( -cllP&) d7i . 

Likewise the basic two-electron integrals all take the form 

WLM I 0 I WL’M’I = J” 06, , b) ~&b ; a~> ~dylP ; EP) A&p ; aP) 

x expt--&) flh4x20 ; 4 &tY20 ; a~> -4dz20 ; Q> 

x exp( - ill QriQ) dam dam . (3.2) 

The one-electron integrals can be further classified as (a) those that can be done in 
closed form and (b) those that require the same numerically approximated auxiliary 
functions as the two-electron integrals. 

A. One-Electron Integrals, Closed Form 

The basic integral of this type is the one-dimensional integral 

1 dx AN(xp ; a) exp(--olXP2) = aN,0(~/o()1/2 (3.3) 

(the SN,O arises from the orthogonality of the Hermite polynomials). Thus the overlap 
integral is simply 

The relation 

x&l&p ; zp) = ml,_, + pl,+,/a, +-F&4, 

then gives 

m-4 I xc1 = @NJ + zi%v*o) sL*,shf,,t+P)“‘” 

with similar results for yC and z, . The second moments are just 

[Am4 1 xc21 = [26,,, f 2T?&J + PC + 843 ~N.01 &.0&4.0(+P)3'2 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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with similar results for yc2, zc2, xczc , or yczc . 
The kinetic energy and gradient matrix elements are given directly by the formula 

for [NLM 1 11. Notice that only the tk (and g,) coefficients for (NE , Lk , AI,> = (0, 0,O) 
are required to evaluate the kinetic energy and gradient matrix elements. 

B. Other One-Electron Integrals 

The basic integral in this category is the nuclear attraction integral [NLM I r$]. 
From the definition of the A’s, this may be written as 

[NLM / rC1] = (a/aP3C)N(a/aP,)L(a/aPz)M [000 1 rC1]. (3.9) 

The integral [000 1 r$] was shown by Boys to be given by 

lo@) I f-21 = CWd MT), 

where 
T = apD2, 

and 

(3.10) 

(3.11) 

F,(T) = [’ exp(-Tu2) du. (3.12) 

If we define the auxiliary function RNLM by 

RNLM = (a/ap3C)N(a/ap11)L(a/apZ)M FO(T) 

then 

(3.13) 

[NLM 1 rC1] = (277/c+) RN~~. (3.14) 

The computation of RNLM will be described in a later section. 
Matrix elements of the components of the electric field, such as xcrc3, can be 

evaluated in two ways which illustrate the tricks needed for more complicated 
integrals. First 

xcrC3 = ar,1/i3Cz, (3.15) 

where it should be noted that differentiation is with respect to the nuclear position. 
Therefore 

[NLM I ccr;“] = (B/BC,)[NLM j rC1]. 

But since T depends on C, - P, , 

(3.16) 

(3.17) 
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for any function g(T). Hence, 

[NLM 1 Wc”] = 4274%) &+I.L.M. 

Alternatively this integral can be evaluated by noting that 

xcrc3 = -&-;l/ax. 

Hence, by integration by parts, 

[NLM [ x,r,“] = [i?(NLM)/ax 1 r;l]. 

But, from the definition of (1,) 

(3.18) 

(3.19) 

(3.20) 

qzv, L, Myax = -(N + 1, L, M), 

so 

[NLM / xcr~“] = -@‘d%d RN+~,L,M . (3.21) 

The components of the electric field gradient are similarly obtained using 

(az/ac,2 - a2jac,“> r;l = 3(xc2 - yc2) rC5 , (3.22) 

g2a2/acz2 - a2jacz2 - a2/acv2) rcl = (3zc2 - rc2) rz5, (3.23) 

and 
(a2jac,ac,) r;l= 3xcycrc5. (3.24) 

Notice these formulas are written so as to avoid problems with the delta function 
which arises in V2rg1. Hence the electric field gradient integrals are given by 

[NLM I 3(xc2 - Yc2) rC5] = (~+~RN+~,L,M - RN,L+B.M), (3.25) 

[NLM \(3zc2 - rc2) r?l = (~'++)(~RN.L.M+z - RN+B,L,M - RN,L+z,M)/~, (3.26) 

[NJ-f I3XcYcrc”l = (297/d RN+I.L+I.M. (3.27) 

Matrix elements over the one-electron spin-orbit operator may be evaluated by 
two different methods. If the space part of the basic spin-orbit operator is considered 
to be rz3rc x V then the z component, for example, is r;“(xc a/ay - yc a/ax). 
Matrix elements of this operator can be evaluated by combining the results given 
above for the electric field with the g, expansion coefficients given previously for the 
gradient. Alternatively integration by parts gives 

The spin-orbit integral then reduces to using the qk coefficients in summing [NLM 1 r;l 
matrix elements. 
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C. Two-Electron Integrals 

The simplest integral in this category is the electron repulsion 

[NLM 1 r;’ 1 N’L’M’] = (apP*)N (ajaP,)L (a/afgM (a/aQzjN’ (a/aQ,)“’ 

waY [Ok I f-ii’ I OW. (3.29) 

Boys evaluated the basic integral as 

where 

[000 ( r;,’ 1 0001 = h&(T) (3.30) 

and 

h = 2Tr5’zc&&!p + ,p2 (3.31) 

T = olpq(ap + q&l PQ”. (3.32) 

Because T involves only the combination P - Q, 

V/aQJ” g(T) = (--alap g(T) (3.33) 

for any function g(T). Hence 

[NLM I r;2l 1 N’L’M’] = A(-l)N’+L’+M’ RN+N,,L+L,,M+M,. (3.34) 

Just as for the electric field and field gradient, integrals over q,r,-,“, xl2 y12r$, etc., 
are easily evaluated. For example, 

[NLM 1 x12rG3 / N’L’M’] 

= --X(-l)N’+L’+M’ RN+NT+~,L+L’,M+M’, (3.35) 

[NLM I 3x,,y,2r;5 / N’L’M’] 

= A(-1) N'+L'+M'R 
N+N'+I.L+L'+~.M+M'Y (3.36) 

WM I Xxf2 - yf2) rG5 I N’L’M’] 

= X(-l) N'+L'+M'(R~+~'+~ L+L' M+M' - RN+N'J+L'+P,M+M') . . 9 (3.37) 

[NLM l&f2 - rF2) ri51 N’L’M’] 

= +1)N’+L’+M’(2&+~‘,~+~‘,~+~‘+2 

-RN+N'+I.L+L'.M+M' - RN,N',L.+L'+~.M+M')/~. (3.38) 

Integrals over these r,-,5 operators appear in calculation of spin-spin interaction matrix 
elements. 
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The space part of the two-electron spin-orbit operator has the form ~~~~~~ x V, . 

The z component of this operator is then 

-3 

( 

a a 
112 

-- __ 
x12 a 

Yl y12 ax, . 1 

Integration by parts yields a result similar to that obtained for the one-electron 
integral, 

(91(l) hG9l r2 (xl2 & - y12 ax, -q 1 dJU> 44 

(3.39) 

Consequently, this integral is given simply as a sum over [NLM 1 r&l / N’LIM’] using 
coefficients qk for the IJ orbitals and Dk for the KL orbitals. Alternatively, of course, 
the integral could be written as a sum over integrals like [NLM [ x12r$ j N’L’M’] 
with g, coefficients for the IJ orbitals. 

4. AUXILIARY FUNCTIONS 

A. RNLM 

The function RNLM is defined as 

RNLM = (a/aa)N (a/ab)L (a/ac)M s,’ e-Tu2 du 

where 
T = a(a2 + b2 + c2). 

By direct chain-rule differentiation an explicit formula for R can be found: 

[N/21 IL/21 m/21 

R NLM = z. z. z. aN-2nbL-21cM-2m 

(4.1) 

(4.2) 

x (2n)!! (F- 2n)! (21)!! (Y- 2Z)! (2m)!! f”M! - 2m)! FN+L+h4-n--l--m~ 

For generating a table of all R NLM up to some maximum N + L + M, as is needed 
in doing blocks of integrals, recursion relations are more useful. These can be found 
from introduction of the more general integral: 

1 
R NLMi = (-#)N+L+M (-&>j 

s 
u~+~+~+~~H~(&~uu) HL(a1/2bu) H,&~ll/~cu) e-T%’ du. 

0 

Let us first note that 

Roooi = t-W F,(T), (4.4) 
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where 

F5V) = jol 29 exp( - TG) du. 

From the recursion relations for the Hermite polynomials, it follows that 

(4.5) 

R O.O.M+l.j = CRO,O,M.~+I + MRo,o,,-IA+, 3 (4.6) 

R O.L+l,M.I = bRo.m>5+l + LRa,~-I.M.M 2 (4.7) 

R N+l.L.M.j = aRN,m.i+l + NRN-LL..M,I+I - (4.8) 

Thus the desired RNLM (given as RNLMO) can be generated from a table of Fj( 7’) for all j 
between 0 and the maximum N + L + M. 

Shavitt [2] has given several formulas useful for evaluating F,(T). Rapid and 
accurate evaluation of this function for a wide range ofj and T requires some care, 
however. Our best program at present evaluates F,(T) by different formulas depending 
on T. 

For 0 < T < 12 and 0 ,( j < J, F,(T) is first evaluated using the seven term Taylor 
expansion 

FJ(T) = i FJ+k(T*)(T* - T)‘/k ! 
k=O 

(4.9) 

where F,&T*) has been pretabulated for T* at intervals of 0.1. With I T* - T [ d 0.05 
this formula has a relative accuracy of lo-l3 for all J < 16. The downward recursion 
relation 

F5(T) = W”&+,(T) + exp(-TT)l/CV + 1) (4.10) 

can then be used to obtain all Fj(T). 
For the range 12 -=c T < 30 we note that 

s 
co 

Fe(T) = &i+f2/T1/2 - exp( - Tu2) du. 
1 

(4.11) 

If the integral JF exp(-Tu2) du is now expressed as exp(-T) g/T, then F,(T) can be 
found with a relative accuracy of lo-l4 from the modified asymptotic series for g: 
12 < T < 15 

g = 0.4999489092 - 0.2473631686 l-l 
+ 0.321180909 T-2 - 0.3811559346 T-3; (4.12) 

15 < T < 18 

g = 0.4998436875 - 0.24249438 T-l + 0.24642845 T-2; (4.13) 
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18 < T<24 

g = 0.499093162 - 0.2152832 T-l; (4.14) 

24 -=c T < 30 

g = 0.490. (4.15) 

Upward recursion, which is unstable for small T or largej, can be used to obtain F,(T) 
with a relative accuracy of lo-l2 for j < 16 and T > 12. 

For T > 30, F,(T) = $rr1J2/T1j2 combined with upward recursion is accurate to 
14 significant figures. Finally, for T > 2J + 36 the exact upward recursion 

F,+dT> = (2WK2j + 1) F,(T) - exp(-T)] (4.16) 

can be replaced by 

4+1(T) = CW-Y2j + l>F,(T) (4.17) 

without loss of accuracy. 
The series for g was derived from the definition 

g = TedT I m du exp(-Tu2) 
1 

by the change of variable v = 2T(u - 1) which gives 

2g = lorn dv exp[-v(1 + LYV)] 

with 01 = (4T)-l. Since decreasing accuracy in g is required as T increases, a Taylor’s 
series expansion of g, 

g = 2 (q-1 afig/acufi lo+ - o1*)y 

was found with 01* corresponding to the smallest T in the interval. Truncation and 
rearrangement of this series gave 4.12 - 4.15. As is well known in the special case 
01* = 0, this is really an asymptotic series for g; but, for 1 a - 01* 1 sufficiently small, 
the truncated series gives g to the accuracy required for finding F,(T) quite precisely. 

5. COMPUTATIONAL CONSIDERATIONS 

The tractability of the two-electron integral formulas hinges upon doing all integrals 
involving four sets of basis functions concurrently, as all require the same R table. If 
the sets are large enough (say all four are p’s) then the calculation of R requires only 
a small fraction of the total time. It then becomes important to perform the loops 
over basis functions and sums over contraction terms efficiently. 
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Table I shows one such scheme. A significant advantage is gained by forming the 
intermediate array I which allows the actual integral to be formed outside the sums 
over o(~ and 01~ . It is noteworthy that with only obvious minor modifications this 
scheme may be employed to calculate spin-spin and spin-orbit two-electron integrals. 

TABLE I 

Scheme for the Computation of All Two-Electron Repulsion Integrals over &A], [&,I, [j&l, 
and lfha~l 

- Sum over 0r~ , aB 
Zero I 

- Sum over OLD, oiD 
Compute xFj( T) 
Compute hR,t, 

- Loop over g, h 
Sum over (N’, L’, k& 

Loop over (N, L, M)p 
Z(k g, 4 = W, g, 4 

+(-1)N'+L'+M'D~~:3R~+~,,~+~,,~+~,, 

- Loop over g, h 
- Loop over i, j 

- Sum over k 
W, i, g, 4 = Xi, i, g, h) + D2Z(k, g, h) 

D Firs denotes the ith member of set I on center A. 

A program has been written employing the scheme in Table I for the repulsion 
integrals. Explicit formulas for the elements of I were added for certain s and p 
integrals. The computation time for a STO-3G set on hydrogen peroxide is 38.5 set 
on a CDC 6400. Dupuis et al. [7] performing the same calculation on a CDC 6400, 
obtained times of 8.4 set for GAUSSIAN 70; 39.9 set for HONDO, a program of 
their own; and, 132.7 set for PHANTOM 75, the most recent version of POLYATOM. 
Upon adding two sets of d functions to the STO-3G set we obtained a computation 
time of about 124.3 set, somewhat less than HONDO’s 152.2 set and considerably 
less than PHANTOM’s 775.6 sec. 

It is obvious from these running times that GAUSSIAN 70 is clearly superior for 
integrals over s and p functions. There are three reasons for this superiority: 
(1) GAUSSIAN 70’s integrals are accurate to only eight figures owing to a less accurate 
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but faster calculation of F,(T); (2) a coordinate transformation is employed to maxi- 
mize the local symmetry of the integral over primitive Gaussians, a distinct advantage 
for highly contracted basis sets [8]; and (3) s and p basis functions are combined into 
one set. GAUSSIAN 70 and HONDO, like our program, compute all integrals 
over four sets of basis functions (or “shells” in the terminology of Dupuis, Rys, 
and Ring) concurrently. Judging from the running times this structure has a clear 
advantage over the one-integral-at-a-time method of PHANTOM 75. Our method 
and the quadrature scheme employed by HONDO seem to be roughly equivalent, 
at least for s’s and p’s. 
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